LA-6786 C.3 CIC-14 REPORT COLLECTION REPRODUCTION COPY **UC-35** Issued: July 1977 ## Solving the Strong-Shock Algorithm for Explosive Yield and Spatial Origin H. C. Goldwire, Jr. Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$3.50 Microfiche \$3.00 This report was prepared as an account of work sponsored by the United States Government. Neither the United States are S ## SOLVING THE STRONG-SHOCK ALGORITHM FOR EXPLOSIVE YIELD AND SPATIAL ORIGIN by #### H. C. Goldwire, Jr. #### **ABSTRACT** We present a linear least squares solution to the strong-shock algorithm where underground explosive yield and spatial origin are unknown. Also presented are methods for determining standard error estimates for the determined quantities and an illustration of the solution with several sets of simulated hydrodynamic data. #### I. INTRODUCTION The yield of an underground explosion can be determined from measurements of the propagation of the explosion-produced shock wave through the ambient geological medium. For a portion of the shock expansion, the shock radius grows as a power-law function of time. In particular, the shock position is given by $$\frac{R(t)}{w^{1/3}} = a \left(\frac{t}{w^{1/3}}\right)^b , \qquad (1)$$ where time t is measured in milliseconds from explosion time, distance R is in meters from the explosion center, and yield W is in kilotons. Detailed calculations by Eilers, using the 1D F³ code with realistic equation-of-state data and tuned¹ to reproduce the von Neuman point-source, constant-gamma, analytical solution, showed for tuff and granite that a and b were sensibly constant and were independent of yield.² These calculations also provided insight as to the range of applicability of the strong-shock algorithm. Bass and Larsen³ have performed similar calculations for other media. This algorithm largely forms the basis of the hydrodynamic yield-determination techniques used at the Los Alamos Scientific Laboratory (LASL). Since spring 1975, we have routinely fielded experiments to determine hydrodynamic yields of LASL nuclear events. Analysis of the data was based on Eq. (1) using the Eilers constants a = 6.29 and b = 0.475, and the results have usually agreed with those obtained from other techniques. We poin out, however, that these experiments were conducted at the Nevada Test Site (NTS) under controlled circumstances: we knew the effective center of the explosion (ECE), i.e., the point of origin of the explosion, and could provide independently determined explosion-time fiducials. Under less controlled circumstances, the absolute spatial and temporal accuracy of the measuring system may be less than ideal or the ECE may be unknown as, for example, in a verification situation under the Peaceful Nuclear Explosives Treaty (PNET)⁴. Accordingly, we have generalized Eq. (1) to $$R(t) + R_o = W^{(1-b)/3} (t + t_o)^b$$ (2) Here, R(t) is the experimentally measured shockfront position at time t, with R and t determined relative to a presumed spatial and temporal origin of the explosion. R_o and t_o are additive corrections to R and t that correct them to the actual explosion time and location. Ideally, experimental R(t) data would be fitted to Eq. (2) to determine any or all of the quantities W, R_o, t_o, a, and b. In practice, a and b are usually assumed known, and the combinations of unknowns we most commonly expect to encounter are (1) W, R_o, (2) W, t_o, or (3) W, R_o, t_o. It is the purpose of this report to present a linear least squares solution to the yield and R-shift (W, R_o) problem and to illustrate its use with several examples. #### II. ANALYSIS For this problem, we assume that a, b, and t_o are known and rewrite Eq. (2) as $$R(t) = c x_1(t) + d x_2(t)$$, (3) where $$c = a W^{(1-b)/3}, d = -R_0,$$ (4) $$x_1(t) = (t + t_0)^b, x_2(t) \equiv 1$$ (5) Equation (3) can be solved by linear least squares regression for the desired constants c and d and for the standard error estimates σ_c , σ_d , and covariance σ_{cd} . Given the data set $(t_i, R_i, \sigma_i; i = 1, N)$, where σ_i is the statistical uncertainty to be associated with the value R_i , we define the auxuliary sums $$A = \sum_{i=1}^{N} \frac{1}{\sigma_i^2}$$ $$D = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} R_i \times_1 (t_i)$$ $$B = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} x_1 (t_i) \qquad E = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} R_i$$ (6) $$c = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} x_1^2 (t_i)$$ $F = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} R_i^2$. Then the desired least square quantities and the corresponding uncertainties are $$c = (DA - BE)/\Delta$$, $d = (CE - BD)/\Delta$ (7) and $$\sigma_c^2 = A/\Delta$$, $\sigma_d^2 = C/\Delta$, $\sigma_{cd} = -B/\Delta$, (8) where $$\Delta = (AC - B^2) .$$ In terms of these quantities, our original quantities W and R_o and their formal uncertainties then are given by $$w = \left(\frac{c}{a}\right)^{3/(1-b)} \qquad \sigma_{w} = w \sqrt{A/\Delta} / c \left(\frac{1-b}{3}\right)$$ $$R_{o} = -d \qquad \sigma_{R_{o}} = \sqrt{C/\Delta} . \qquad (9)$$ If the individual standard deviations σ_1 are unknown or if an unweighted fit is desired, the σ_1 in Eqs. (6) should all be set equal to a constant σ_0 (to be determined). Note that in this case σ_0 will cancel out of Eqs. (7), allowing c and d to still be determined. For Eqs. (8), however, we can obtain an unbiased statistical estimate for σ_0 from σ_R , the standard deviation of the data about the fit. In particular, we calculate σ_R from $$\sigma_{R} = \left\{ \frac{\sum_{i=1}^{N} \left[R_{i} + R_{o} - a W^{(1-b)/3} \left(t_{i} + t_{o} \right)^{b} \right]^{2}}{N - 2} \right\}^{1/2}.$$ (10) or with less precision from the auxiliary sums (6) $$\sigma_{R} = \left\{ \frac{c^{2} C + 2cdB - 2cD + Ad^{2} - 2dE + F}{N - 2} \right\}^{1/2}$$ (11) #### III. TWO EXAMPLES To illustrate this least squares method, we present in Tables I and II two sets of simulated hydrodynamic data. The labels for the quantities in these tables are explained in Table III. #### A. Properties of the Generated Data Sets Using Eq. (1) with a yield of 150 kt, data were generated at 100-\mu s intervals over the time span 1.0-3.5 ms, the approximate range normally analyzed for such a yield. These algorithmic data were then modified by adding 5.000 m to all points (thereby simulating the effects of an origin shift or an absolute calibration error) and by adding randomnoise deviations to simulate the effects of noisy data. The noise levels chosen, rms deviations of 4.1 and 5.3 cm per point, correspond to high-quality data, but such levels are achievable today. For a medium sonic velocity of 3.0 m/ms, the data are all presonic and hence usable. (The sonic time and radius would be 5.27 ms and 33.30 m, respectively.) #### B. Results of the Least Squares Fits Tables I and II illustrate calculation results at added noise levels of 4.1 and 5.3 cm, respectively. The least squares solutions agree very well with the "correct" answer WALG = 150 kt and RSHIFT = -5.00 m. Also, the formal ranges of uncertainty for the two determined quantities, WFIT \pm SIGW and RSHIFT \pm RSIGR0, do encompass the correct answer. Work is in progress on a statistical analysis of man such examples as are presented in these tables. It should be pointed out that analyses of actual hydrodynamic data will not, in general, be so successful. Among the reasons for this are the following. - 1. Less data may be obtained. - 2. Noise sources may not be strictly Gaussian. - 3. The algorithmic region of data may be restricted or difficult to identify. - 4. The algorithm is only an approximation to actual physics of expansion. - 5. Explosions may not be point sources. #### IV. CONCLUSIONS This least squares method enables one to efficiently and effectively solve Eq. (2) for R_o and W, assuming that t_o, a, and b are known. This method was shown to work successfully for the simulated data of Tables I and II. A number of statistical quantities of interest were also calculated and are presented in the tables. To the extent that data noise sources are Gaussian and the data follow the strong-shock algorithm, this least squares method is statistically the most powerful and appropriate technique to use for solving for yield and shifts of origin. #### REFERENCES - 1. D. D. Eilers, "A Numerical Integration of a 97 kt Explosion in Sea Level Air," Los Alamos Scientific Laboratory report LAMS-2985 (December 1963). - 2. D. D. Eilers, Los Alamos Scientific Laboratory, private communication, June 1975. - 3. R. C. Bass and G. E. Larsen, "Shock Propagation in Several Geologic Materials of Interest in Hydrodynamic Yield Determinations," Sandia Laboratories, Albuquerque, report SAND 77-0402 (March 1977). - 4. "Treaties on the Limitation of Underground Nuclear Weapon Tests and on Underground Nuclear Explosions for Peaceful Purposes," US Arms Control and Disarmament Agency Publ. 87 (May 1976). ## TABLE I # LINEAR LEAST SQUARES TEST CASE (noise level ≈ 4.1 cm per point) | | PROPERTIES | OF GENERAT | 'ED DATA SET | |--|------------|------------|--------------| |--|------------|------------|--------------| | MPTS= | 26 | WALG= 1:
VS= | | TS= 5.27
RS= 33.30 | | 0.000
5.000 | | 1.00 NOI
3.50 NOI | SE SIGMA= .0411
SE MEAN= .0002 | |----------------|-----------------------------------|--|--|--|--|--|---|--|--| | PROPERTI | ES OF L | EAST SQ | UARES FIT | TO DATA | | | | | CSAB= .05701 | | WFIT=
SIGW= | 149.54 | | SHIFT=
SIGRO= | -5.0119
.0501 | SIGR=
RATIO= | .041890
1.019424 | CSR=
FACT= | .04179
.99754 | AFIT= 6.28663
SIGA= .01421 | | PO | INT 12345678901123156789012234526 | TIME
1.00
1.100
1.20
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.5 | RALG+5h
20-117(
20-8171
21-4844
22-7369
23-3278
23-8983
24-9858
25-9858
26-9114
26-984
27-953
28-800
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
29-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230
20-230 | 20.1318
20.8166
21.5138
22.1247
22.7172
3.3886
3.23.8358
6.23.8358
6.25.4986
7.25.4986
7.25.4986
7.25.4986
7.25.4986
7.25.4986
7.25.4986
7.25.4986
7.25.4986
7.26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.531
26.5 | 20.120
20.820
21.487
22.126
23.329
23.329
23.900
24.452
24.987
26.984
27.453
26.984
27.453
28.799
29.229
29.651
30.872
30.872
31.651
32.032 | 01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01096
01 | 0147
-0005
-013
-019
-0406
-0472
-0472
-0118
-0271
-0250
-035
-036
-03770
-03770
-03770
-03770
-03770
-03770 | 150.1588
149.3268
150.9056
149.4676
148.4771
152.2707
146.6526
151.2763
147.4823
149.0355
150.6065
148.2863
148.2863
148.2866
148.2866
148.2866
148.2866
148.2866
148.7343 | .1588
6732
.9011
5324
-1.5229
2.2707
-3.3474
1.2763
-2.5177
8110
9645
-1.4345
2.1698
-1.1784
-3.9258
2.3152
3039
0395
0395
0395
0395
05097
.6170
.8126
-1.2657 | | | | | | | MEAN
SIGM | | | 149.5532
1.6321 | | #### AUXILIARY QUANTITIES | CC≖ | 15.10893 | SX = | 3.7648762E+U1 | |------|----------|------|---------------| | SC≖ | .03415 | SX2= | 5.6021318E+01 | | 00= | 5.01195 | SRX= | 1.0351156E+03 | | SD= | .05013 | SR = | 6.9914299E+02 | | SCD= | 96227 | SR2= | 1.9143594E+04 | | | | | | ## TABLE II ## LINEAR LEAST SQUARES TEST CASE (noise level \approx 5.3 cm per point) | PROPERTIES | ΛE | CEMEDATER | DATA | CET | |-------------|----|-----------|------|------| | LMOLEN 1752 | UF | DEMERALED | אואט | 2E 1 | | NPTS= | | ALG≖
S≖ | 150.00
3.00 | †\$≠
R\$= | 5.27
33.30 | TADD=
RADD= | 0.000
5.000 | TSTART=
TSTOP= | 1.00 NO | DISE SIGMA=
DISE MEAN= | .0534
.0047 | |----------------|--|--|---|-------------------------------|--|--|--|---|---|---------------------------|------------------| | PROPERTI | ES OF LE | AST S | QUARES FI | T TO | DATA | | | | | CSAB= . | 36876 | | HFIT=
SIGW= | 148.967
2.494 | 3 | RSHIFT=
RSIGR O = | | 0312
0649 | SIGR=
RATIO= | .05426 8
1.017015 | CSR=
FACT= | .05474
1.00878 | | .28240
.01841 | | PO | 1NT
123456789111231451617892212234526 | TIME 1.00 1.20 1.20 1.20 1.20 1.20 1.20 1.20 | 20.117
20.817
21.484
22.123
23.327
23.898
24.498
24.498
25.501
26.984
27.451
28.361
27.91
28.361
29.23
29.23
29.23
29.23 | 01649835874115728108271101795 | RDATA
20.1877
20.8596
21.4600
22.1322
22.7321
23.3159
23.8081
24.4871
25.5268
25.9251
26.5447
27.0232
27.5346
27.5346
27.5346
27.5346
27.5346
27.7250
30.0289
30.4934
30.8478
31.1874
31.6406
32.0541
32.0541 | 27.457
27.915
28.363
28.802
29.232
29.654
30.068
30.474
30.873
31.266
31.652
32.407 | 0 0577 2 0300 8 - 0358 6 - 0016 8 - 0016 8 - 0017 7 - 0986 1 0028 8 - 0022 3 0356 2 076 7 - 016 8 067 7 - 016 5 077 5 - 106 5 077 5 - 016 6 - 085 9 - 012 1 0014 | 7 0706
3 0424
5 -0245
5 -090
6 -0119
6 -090
9 0364
7 0044
7 0041
1 -066
6 040
0 -015
6 043
1 079
0 -104
8 072
2 -035
3 -013
1 0196
9 046 | 152. 25
150. 60
147. 99
148. 88
148. 88
148. 88
148. 87
148. 88
148. 57
150. 23
148. 85
150. 37
150. 37
150. 37
150. 45
150. 45
151. 74
148. 10
148. 10
148. 10
148. 10
148. 10
148. 10
149. 63
150. 46 | 01 | | | | | | | | | MEAN
SIGH | | 0 .004°
3 .053 | | | | ## AUXILIARY QUANTITIES | CC= | 15.09877 | SX = | 3.7648762E+01 | |-------------|---------------|-------------|---------------| | SC= | .04424 | \$X2= | 5.6021318E+01 | | 00= | 5.03119 | SRX≃ | 1.0352710E+03 | | 5 0= | .06494 | SR = | 6.9926087E+02 | | SCD= | 9 6227 | SR2= | 1.9149501E+04 | ## TABLE III #### **DEFINITIONS** | Label | Explanation | |--------------|---| | NPTS | Number of generated algorithm points | | WALG | Algorithmic yield | | VS | Sonic velocity of medium | | TS,RS | Sonic time and radius | | TADD,RADD | Time and radius increments added to | | | algorithmic data | | TSTART,TSTOP | Time span of data | | NOISE SIGMA | Standard deviation of random noise deviates | | NOISE MEAN | Mean of deviations | | WFIT | Least squares fitted value of yield W | | SIGW | $\sigma_{ m W}$ | | RSHIFT | Least squares fitted value of R_{\circ} | | RSIGR0 | $\sigma_{\mathrm{R}_{\mathbf{Q}}}$ | | SIGR | $\sigma_{ m R}$ | | RATIO | $\sigma_{ m R}$ /noise sigma | | CSR | An "approximation" to $\sigma_{ m R}$ | | FACT | $\mathrm{CSR}/\sigma_{\mathrm{R}}$ | | AFIT | Least squares fitted value of a, assuming | | 4.07.0 | W fixed at value WALG | | ASIG | σ _α | | RALG + 5M | Algorithmic data + 5:000 m | | RDATA | Data analyzed = RALG + 5M + NOISE | | RFIT | Resulting fit to data | | DELR | Deviations, RDATA - RFIT Noise deviates added to algorithmic data | | NOISE | Calculated yields for individual data points | | WCALC | corresponding to fitted values of W and R_{\circ} | | W-WALG | WCALC - WALG | Unlabeled quantities below columns labeled DELR, NOISE, WCALC, and W-WALG in Tables I and II are means and standard deviations of entries in the corresponding columns. | CC | c | |-----|--------------------------------| | SC | $\sigma_{ extsf{c}}$ | | DD | d | | SD | $\sigma_{ t d}$ | | SCD | $\sigma_{ exttt{cd}}$ | | SX | B) | | SX2 | C | | SRX | D Multiplied by σ_R^2 | | SR | E | | SR2 | F) |